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ABSTRACT 15’]8'7

The problem of critical permenent dimensional changes in grades 6061 and
7075 aluminum alloy valve bodies that occurred during cryogenic thermal cycling
is described in this report. A special fabrication process to reduce the distor-
tions within tolerable design levels was develcoped and applied to test hardware.

Test data confirmed that the special process reduced distortions in both
aluminum alloys, but the degree of distortion was dependent upon body shape.
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i. INTRCDUCTION

The dimensional instability experienced in the M-1 aluminum valve bodies
which was caused by relaxation of residual stress during cryogenic thermal cycling
was investigated. The results of this investigation are delineated in this report.

The invastigation was to determine the causes of critical dimensional changes
in the forged-aluminum valve bcdies as well as to develop fabrication methods to
provide a stabilized material that would reduce or eliminate distortions.

A metallurgical discussion concerning the residual stresses associated with
forged parts is included along with the methods devised to minimize the effects,
by redistribution, of the residusl stresses.

Comparisons are made between the actual test data from unprocessed and
processed valve bodies.

Recommendations based upon the results of this study are included.

Lltheough this report deals primarily with 6061 and 7075 aluminum forged
mzterials, it appears that the problems presented and the solutions offered are
applicable to other sluminum forging materials for cryogenic applications.

il. SCMMARY

The dimensional instability of the 6061-T6 and 7075-T6 and -T73 M-1 gas
generator and start system control valve bodies was investigated. This instability
was found to be caused by the relaxation of residual stresses that occurred during
cryogenic thermal cycling of the valve. The residual stresses resulted primarily
from heat treatment (quenching) and machining operations.

£ special fabrication process, incorporating a reheat treatment to relieve
mechining stresses and a pressure stabilizing operation to reverse the stress
pattern resulting from the guenching coperation, was applied to the test hardware.
This test hardware, alcng with the standard processed valve bodies, was sub-
sequsntly subjected tc cryogenic thermal cycling. Diametral change versus thermal
cycle data were obtained. A ccmparison of the data showed the specially processed
valve bodies experienced less distcortion during the thermal cycling.

IIT. TECENICAL DISCUSSION

A, DEVELOPMENT TESTING

During develcpment tests with the gas generator oxidizer valve body,
a dimensicnal instability problem cccurred after cooling the body to liquid nitrogen
temperatures and then warming it to ambient temperatures. During this testing,
the inlet and outlet flange joints were effectively sealed at ambient tempera-
tures and alsc during the first leak tests at liquid nitrogen temperatures.
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However, after the joints were returned to ambient temperatures, excessive leakage
was experienced. Critical diametral dimensions were changing during the tempera-
ture cycle and were not returning to the dimensions recorded prior to the cycle.
No definite pattern in the dimensional changes from part to part or for a par-
ticular part subjected to a number of temperature cycles was established. In some
cases, the diameters increased; in others, they decreased. Subsequent testing
verified that both the -T6 and -T73 conditions of the gas generator oxidizer

valve 7075 aluminum alloy forging were subject to this instability. Similar tests
conducted with the 6061-T6 start valve body and the 7075-T6 gas generator fuel
valve body proved that the problem existed with all of these aluminum-forged
parts. Dimensional changes were noted even after 2L temperature cycles.

An accelerated program was initiated to discover the cause of the
instability phenomenon and to arrive at an optimum solution to the problem.

B. METALIURGICAL

1. Alloys and Heat Treatment for Gas Generator Valve Bodies

Aluminum alloys, grades 7075 (Al-S.SZn-Z.5Mg-l.5Cu—O.3Cr-O.2Mn),
and 6061 (Al-1.0Mg-0.68i-0.25Cu-0.25Cr) are used in the M-1 gas generator valve
bodies.

The heat treatments applied to the grade 7075 alloys are either
the - T6 or -T73 tempers. The latter treatment was developed by the Aluminum
Company of America and i1s used for the prevention of stress-corrosion cracking;
the -T6 temper is used for grade 6061 alloy. The heat treatments require a solu-
tion treatment prior to aging to obtain age-hardening response. For grade 7075
alloy, solution treatment is performed at a temperature of 860°F to 930°F and is
followed by a quench in water at a temperature of 150°F to 212°F. 1In the case
of grade 6061 alloy, the solution-treatment temperature is slightly higher,
960°F to 1010°F, and is also followed by a similar water quench. Aging follows
solutioning treatments. The -T6 age for grade 6061 is performed at 345°F to
355°F for 6 to 10 hr. For grade 7075 alloy, the -T6 age is performed at 2L5°F to
255°F for 24 to 28 hr; slightly higher aging temperature results in the -T73
temper for grade T7075. The cooling rate from the aging temperatures to ambient
temperatures is not critical, and still air cooling i1s the standard practice.

2. Residual Stresses in Gas Generator Valve Bodies

An adverse result of the quenching operation during the solution-
treatment cycle is the drastic thermal and strain gradients that occur causing
residual stresses in the gas generator valve bodies. The normal pattern of the
residual stresses 1s one of compression in the outer surface fibers and tension
in the core. However, variaticns from this pattern are possible because of the
particular geometrical design.
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3. Effect of Residual Stresses and Metallurgical Instability
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1) rDimensicnel Stebility cf Aluminum Alloys, Batielle Memorial Institute
Ietter Pepcrt, Faoraery 1964.
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oversize as a result of the degree of possible distortion which might occur during
the main heat-treating operation. The situation encountered with the gas generator
valve bodies required an oversize of 0.050-in. on all surfaces. This oversize
resulted in a sufficient mass of material to account for any distortion that might
oceur during stress-relieving, reheat treatment, and autofrettage. It also pro-
vides for clean-up in subsequent finish machining operations.

c. SELECTED PROCESSES

It was noted during thrust chamber valve development testing that the
thrust chamber valve body was apparently stable. This body is made by welding
two 6061-T6 body halves together. The difference in processing this body and
the gas generator valves and start valve bodies is that the thrust chambervalve body is
subjected to a heat treat and pressure stabilization after the welding is completed.
The thrust chamber valve body was processed in the following manner. The two
halves were welded together, then they were rough machined, reheat treated (solution
treated and aged per MIL-H-6088) to the T6 condition, proof and leak tested, and
finish-machined.

As a basis for comparison, the gas generator valves and start valve
bodies were processed to the following standard process condition. They were
heat treated to the -T6 or -T73 condition for TO75 aluminum, or -T6 condition
for 6061 aluminum, and then completely machined.

It was concluded that the dimensional instability problem was caused
by residual stresses that remain in the part after the heat-treat quench and heavy
machining. These stresses were apparently removed from the thrust chamber valve
body by the special process outlined above. Therefore, the fabrication process
selected to stabilize the forged gas generator valve and start valve bodies con-
sisted of the following five basic steps.

1. Heat treat the rough forging by normal processes to the desired
final heat-treat condition (-T73 for 7075 and -T6 for 6061).

2. Rough machine to within 0.050-in. of the final dimensions.

3. Again, solution heat treat and age to the desired final temper
condition.

L. Pressure stabilize at approximately 1.3 times proof pressure of
the finished part.

5. Machine to the final blueprint dimensions.
The special process was selected based upon the following analysis.

Removal of a relatively thick layer of material (O.ES-in.) during rough machining
upsets the balance of residual stresses that remain in the part from quenching.

Page 4




The second heat-treat cycle balances the quench stresses, with compressive stresses
on all surfaces. Pressurizing the body at a pressure level above the proof pres-
sure prior to finish machining should eliminate any possibility of the part dis-
torting during the valve proof test. In addition, if the part does receive a
permanent distortion at this point, the residual stresses will have been lowered,
which would help eliminate the instability problem. Subsequent finish machining
removes only the surface layer of material, and should not penetrate into the
tensile-stressed core.

IV. TEST PROCEDURES

Thermal cycling tests were conducted with finish-machined valve bodies to
determine the dimensional changes {permanent distortions) that occurred during
the cveling. The bodies tested included both those that received only the
standard heat-treat process and those that received the previously described

selected process. The methods used in conducting these tests are discussed below.
£, INITTIAL DIMENSIONAIL INSPECTION

Critical diameters were selected at each port on the valve body
and actual dimensions were recorded at three or four equally spaced positions
(0 degrees, 60 degrees, 120 degrees, or 0 degrees, 45 degrees, 90 degrees, and
135 degrees) on the diameters. The same diameters and positions were used in
all subsequent dimensional inspections. All dimensions were recorded with the
valve body at room temperature (68 + 5°F).

B. IOW TEMPERATURE THERMAL CYCIE

The valve body was submerged in a container filled with liquid nitrogen

(-320°F) until the body temperatures stabilized. The valve body was then removed
from the liquid nitrogen (-320°F) bath and permitted to return to room tempera-
ture (68 + 5°F).

Ce FINAL DIMENSIONAL INSPECTION
The dimension inspection of the diameters was repeated and the body
recycled for 24 cycles or until no dimensional changes could be detected, which-

ever occurred first.

Ve TEST RESJITS

A. STANDARD PROCESS

Initial tests were ccnducted using four different forged body con-
figurations. These valve bodies were processed using the following standard
fabrication process. They were heat treated to the -T6 or -T73 condition for
7075 aluminum alloy, and to the -T6 condition for 6061 aluminum alloy and then
they were finished-machined. The purrose of these tests was to ascertain any
apparent effects caused by the body shape. The bodies that were tested and the
associated heat treatment and materials are indicated in the following tabulation.
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Material and

Body Configurations Part No. Serial No. Heat Treat
1. M-1 GG Oxidizer Valve Body 273868-9 0000003 T075-T6
2. M-1 GG Oxidizer Valve Body 273868-9 0000010 T7075-T73
3. Titan II TC Fuel Valve Body 250220-9 0000140 7075-T73
L. M-1 6-in. Dual Seal Test Cell 263689-9 0000008 TO75-T6
5. M-1 GG Fuel Valve Body 273802-9 0000005 7075-T6
6. M-1 Start Valve Body 277998-9 0000013 6061-T6

The configuration of the gas generator oxidizer valve body is shown
in Figure 1. This unit contained three flanges, two of which had close tolerance
dimensions (the inlet and outlet flanges). Two different standard heat treats
were tested on this 7075 aluminum body configuration (-T6 and -T73). The changes
on the inlet port diameters of the 7075-T6 body are shown in Figure 2 and the
changes on the outlet port diameters are shown in Figure 3. The changes on the
inlet port diameters of the TO75-TT73 body are shown in Figure 4 and the changes
on the outlet port diameters are shown in Figure 5. The different positions
plotted for each diameter coincides with the planes shown in Figure 1.

The configuration of the Titan II thrust chamber fuel valve body is
shown in Figure 6. This unit contains three flanges with close tolerance dimen-
sions. The standard heat treatment for this 7075 aluminum body is -T73. The
diametral changes during thermal cycling for this unit are shown in Figure . 7.

The different positions plotted for each diameter coincide with the planes shown
in Figure 6.

The 6-in. dual seal test cell was a simulated system joint with
perfectly cylindrical shape and with stub tubular sections attached to the flange
as shown in Figure 8. The results of the thermal cycling tests on this configura-
tion are shown in Figure 9. The different positions plotted for each diameter
coincide with the planes shown in Figure 8.

The configuration of the gas generator fuel valve body is shown in
Figure 10. This unit contains four flanges, all of which had close tolerance
dimensions (the inlet, outlet, actuator, and pilot valve flanges). The standard
heat treatment for this 7075 bedy was -T73. The changes of the inlet, outlet,
actuator, and pilot valve port diameters are shown in Figures 11, 12, 13, and
14 respectively.

The configuration of the start valve body is shown in Figure 15. This
unit contains four flanges, all of which have close tolerance dimensions. The
standard heat treatment for this 6061 aluminum body is -T6. The changes of the
inlet and outlet flange diameters are shown in Figure 16. The changes on the
retainer and cover flanges are shown in Figure 17.
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Figure 11

VERSUS NO.

INLET PORT DIAMETRAL CHANGE
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VERSUS NO.

PILOT VALVE PORT DIAMETRAL CHANGE
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B. SPECIAL PROCESS (STABILIZED)

Thermal cycling tests were performed using two different body con-
figurations; the M-l gas generator oxidizer valve body and the Titan II thrust
chamber fuel valve body. Two of the M-1 gas generator oxidizer valve bodies
were tested. One unit was forged from 7075 aluminum, heat treated to the -TT73
condition and then stabilized. The other unit was forged of 6061 aluminum, heat
treated to the -T6 condition, and then stabilized. The Titan II thrust chamber
fuel valve body was forged from 7075 aluminum, heat treated to the -TT73 condition,
and then stabilized. The following units were tested.

Body Configuration Part No. Serial No. Material and Heat Treat
M-1 GGOV Body 273868-9 0000018 T7075-T73

M-1 GGOV Body TO7546-9 00000k 1. 6061-T6

Titan II TCFV Body 250220-5 0000233 T075-T73

The results of the test with the TOT7T5-T73 stabilized gas generator
oxidizer valve body are shown in Figures 18 and 19. The results of the test
with the 6061-T6 stabilized gas generator oxidizer valve body are shown in
Figures 20 and 21. The thrust chamber fuel valve TOT75-TT73 stabilized body test
results are shown in Figure 22.

C. TEST DATA SUMMARY

A complete summary of the maximum to minimum and average distortions
experienced with each of the body configurations is presented in Table 1. Detailed
discussions of these data with respect to body configuration effects, materials,
and heat-treat process effects, etc., follow.

1. Configuration Effects

The data concerning the effects of the body configuration using
only the standard heat-treat processed bodies are summarized below.

Total Distortions Range of Change
Body Configuration Port (in./in. Diameter) (in./in. Diameter)
GGOV Body Inlet L.3 to 2k.5 x 107t 20.2 x 107*
GGOV Body Outlet 2.8 to 6.5 x 10'LL 3.7 x 10’LL
M-1 6-in. Test Cell 1.5 to 3.6 x 1o'LL 2.1 x 107"
GGFV Body Tnlet 1.5 to 5.3 x 1o'LL 3.8 x 1o'u
GGFV Body Outlet 1.8 to 8.7 x 10'LL 6.9 x 1o'u
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Figure 18

INLET PORT DIAMETRAL CHANGE
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Figure 19
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VERSUS NO. THERMAL CYCLES
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Total Distortions Range of Change

Body Configuration Port (in./in. Diameter) (in./in. Diameter)
GGFV Doy Actuator 1.3 to 8.1 x 107" 6.8 x 107"
GGFV Body Pilot Valve 19.4 to 19.5 x 107 0.1 x 107
Start Valve Body Inlet 5.1 to 7.8 x 1o'u 2.7 x lO-LL
Start Valve Body Retainer 2.8 to 6.1 x 10'lL 3.3 x 10'lL
Start Valve Body Actuator 9.8 to 9.8 x 1o'u Approx, 0

Start Valve Body Outlet 7.5 to 7.5 x ]_O_LL Approx. 0O

As expected, the range of change (difference between maximum
and minimum distortions) in the diameters (the tendency towards distorting
out-of-round) was a function of the shape of the flange and surrounding or
adjoining material. The closer the flange and adjoining material was to a true
cylindrical shape, the less the tendency was to distort out-of-round. In this
case, the range of change was relatively small and the total change was small.
Also, if the diameters were located within, or surrounded by, a relatively mas-
sive section, the range of change was smaller, though the total change was
relatively large. The 6-in. dual seal test cell ( a true cylindrically-shaped
flange with cylindrical adjoining material) exhibited the smallest total distortions
with a relatively small range of change. The pilot valve port in the gas generator
fuel valve body (diameters located in a heavier mass of material) exhibited
relatively large total distortions, but a small range. The outlet port on the
gas generator oxidizer valve body (close to a cylindrically shaped flange with
nearly cylindrically shaped adjoining material) also exhibited relatively small
total distortions and small range. The outlet and actuator ports on the start
valve body (also near a cylindrical shape) exhibited relatively large total dis-
tortions but with a small range.

There is no apparent correlation between the direction of dis-
tortion (expansion or contraction) and the location of the diameter with respect
to the inner or outer fibers (or the center) of the forged section. To reach a
condition of equilibrium stress, the following assumption is made: diameters
located near the inner fibers (residuzl compressive stresses) would tend to con-
tract and diameters located near the outer fibers (also residual compressive
stresses) would tend to expand to relieve the residual stresses. Apparently, the
shape of the section is the predominant governing factor.

2. Materials and Heat-Treat Effects on GGOV Body

The average distortion experienced with the standard heat-
treated 7075 aluminum forgings for the gas generator oxidizer valve body was
approximately 13.0 x 107 in./in. diameter, while the average distortion
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experienced in the stabilized 7075 aluminum forging was approximately 10.5 x 10-“
in./in. diameter; an average reduction of 19%. The average distortion experienced
with the stabilized 6061 aluminum forging was approximately 4.5 x 104 in./in.
diameter; a reduction of 73% over the standard heat-treated 7075 aluminum forgings
and 57% over the stabilized 7075 aluminum forgings.

3. Comparison of Heat Treatments on 6061 Aluminum Forgings

The average distortions experienced with the standard heat-treated
6061 aluminum start valve body forging was 7.0 x 10-4 in./in. diameter. The average
distortions experienced with the stabilized 6061 aluminum gas generator oxidizer
valve body forging was 4.5 x 10-% in./in. diameter. The calculated reduction of
distortion in the 6061-T6é forging processed by the speciasl fabrication method is 29%.

VI. CONCLUSIONS

Permanent distortions (dimensional instability) encountered in the aluminum
forgings during cryogenic thermal cycling was caused by residual stresses. The re-
heat treatment and pressure stabilization process reduced the distortions by approxi-
mately 20% in the 7075 aluminum forgings and approximately 30% in the 6061 aluminum
forging. It is doubtful that a process could be devised that would completely
eliminate permanent distortions of the aluminum forgings.

The degree of dimensional instability was dependent upon the mass and shape
of the finish-machined forging. Total distortions and the range of distortions
(maximum to minimum) were smaller in forgings having cylindrically shaped configur-
ations. Total distortions of areas adjacent to and located in massive sections
tended to be large, but the range of distortions were small (tends to maintain
roundness, flatness, parallelism, etc.). Odd-shaped sections tended to experience
large total distortions and a large range of distortions (distorts out-of-round,
out-of-flat, etc.).

The 6061 aluminum forgings appeared more stable for low-temperature thermal
cycling applications than the 7075 aluminum forgings.

VII. RECOMMENDATIONS

The re-heat treatment and the pressure stabilization process described herein
should be incorporated in the fabrication process to minimize dimensional instability
in valve bodies and other parts intended for low temperature service. This is par-
ticularly important for valve bodies, housings, and actuators that require close
tolerance dimensions for sealing and proper fit. -

The advantages of a low temperature stress relief treatment after final
machining should be investigated to further reduce the residual stress level in
the valve bodies. A treatment at 200°F for 24 hours has been found suitable for
certain aluminum alloy forgings 2), This may be required for very close tolerances
in parts where the stabilization process alone does not reduce distortions within
tolerable limits,

YZ)Dimensional Stability of Aluminum Alloys, Battelle Memorial Institute Letter
Report, February 1964
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